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Pressure dependence of vibrational frequencies in 
a solid nitrogen 

A El-Sadek, A A Helmy and S El-Eraky 
Department of Engineering Physics, Faculty of Engineering, Cairo University, Giza. 
Egypt 

Reseived6July 1990, in final form 20 December 1990 

Abstract. Properties of solid nitrogen under pressure have been studied in terms of a 
harmonic intramolecular potential and a parametrized site-site Lennard-Jones [6-12]-type 
potential to describe the interaction between non-bonded atoms using the lattice sum. A 
computer simulation study as an alternative to the experiment has been used to obtain the 
pressurized nitrogen. The sublimation energy. the equation ofstate, the minimum potential 
energies of the crystal in the molar volume range 16-28cm' and the corresponding bond 
lengths were reproduced satisfactorily for a-nitrogen. The pressure dependence of the 
frequencychangeand bulkmodulus were alsoestimatedandcomparedwith theexperimental 
data. 
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E Lennard-Jones potential constant 
p Molecular reduced mass 
v Frequency 
p Density 
U Lennard-Jones potential constant 

1. Introduction 

Pressurecausessubstantialchangesin the molarvolumeordensity. Thisaffectsthe solid 
in two important ways: the first is the change in intermolecular forces, and the second is 
the change in single molecular rotational states. 

The pressure dependence for intramolecular vibration has been calculated for CO, 
by Hmson and Bachman [l]. They assumed that the extemal pressure causes small 
changes in bond lengths with subsequent effect on the force constant. Using the intra- 
molecular force constants of Suzuki [Z], they found that forp = 100 kbar and area of 
4.995 AZ the change in the bound length is -0.0083 8,or -0.15 in the dimensionless 
stretchingcoordinate q. This model can be applied to any simple structure such as CO2. 
Solid CO2 has an FCC structure belonging to the space group Pa3 with four molecules 
per unit cell. The CO, molecule has three fundamental normal vibrational modes: 
the symmetric stretching, the bending and anti-symmetric stretching modes. For solid 
nitrogen there is only one normal mode of vibration: the symmetric stretching mode. 
The e-phase of nitrogen belongs to Pa3 as does CO, and we can apply this model for 
calculating the pressure dependence of the vibrational frequency. In concert with the 
development of the diamond cell technology [3], there has been a great advance in the 
utilization of Raman scattering and infrared absorption to study the pressure dependence 
of the intramolecular vibrational modes in molecular crystal. Raman scattering experi- 
ments [4] on the stretching mode in solid nitrogen at room temperature have been 
performed up to 374kbar. There is a splitting of this mode in the region 
54 kbar s p  s 118 kbar, because the crystal structure has two inequivalent sites [5] .  
Measurements of broadening and splitting from the ruby gauge indicate that solid 
nitrogen is reasonably plastic up to 130 kbar and dv/dp isa decreasing positive quantity 
in the region 39 kbar S p  S 374 kbar L6J. The purpose of this work is to show the 
pressure dependence of the intramolecular vibrational modes in the intermolecular and 
intramolecular potentials. 

2. Method 

The pressure dependence of the intramolecular mode frequencies in NZ depends in 
detail on the intermolecular and intramolecular interactions. We utilize a microscopic 
model, in which the intermolecular part of the crystal potential energy is of the atom- 
atom form [7]. 

Uinter = Uaa(R,J (1) 
4 

where the sum extends over all painvise interactions between atoms of different mol- 
ecules and R, is the interatomic distance. The intramolecular potential can be described 
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Uhsa = fk ( r  - ro)’ + g(r - ro)3  + . . . . 
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as an expansion in powers of the atomic displacements from equilibrium: 

(2) 
The constants k and g are determined by fitting to spectroscopic data, ro is the 

equilibrium separation between atoms in an isolated diatomic molecule and r is its 
instantaneous value. Keeping only terms up to cubic in equation (2), the total potential 
energy per molecule in the solid is 

U = Ik(r - ro)’ + g(r - r0)3 + (l/%?Uh,,, (3) 
where Nis the total number of molecules in the system. Similarly Ucan be expressed as 
an expansion about the equilibrium intramolecular atomic separation r, in the solid: 

U= Ik‘(r - r,)’ + g’(r - T , ) ~  + . . . (4) 
where k’ andg’ are the quadratic and cubic force constants, respectively. Taking second 
derivatives of equations (3)  and (4) with respect tor  and equating them at r = r,, we get 

k’ = k + 6g(r, - ro) + (1/N)(a2Uintcr/arZ)/r=r, (5)  
for the quadratic intramolecular force constant in a solid. Utilizing the binomial 
expression the normal mode frequency change in the solid is 

WP) = v ( p )  - vo = A [ r , ( p )  - r01 + B[d2(l;,,,,/ar21(,~(,) (6) 

with 

A = 3g/4n2pvo B = (8xpvON)-’ 

where p is the molecular reduced mass and vo is the isolated molecular normal mode 
frequency. The contribution to the gas to solid frequency shift from the crystal-field 
perturbation is clearly Sv(0). In addition to this term, the physical shift also includes an 
expression involving the change in polarization between the two phases: 

is the frequency shift in the solid between zero and the pressurep. The second-derivative 
terms in equation (7) while small compared with the first term are not negligible at high 
pressures. Clearly, the calculation of r,(p) is the most important element in the analysis. 
The calculation proceeds by evaluating the total potential energy per molecule (equation 
(3)) for the appropriate crystal structure. Lattice sums are taken over the first shells 
until thecontributionof additionalshells to the value ofthe potentialenergyisnegligible. 
The intramolecular separation r is then varied in equation (3) until it is minimizd at 
r = r,. Note that Uiiorer is a function of r as is the intramolecular potential because the 
force centres in the atom-atom potential are separated by r. This procedure is repeated 
at each molar volume until a mapping of r,-volume relation is determined by taking the 
derivative p = -3 Ui,&Vof the energy U,,,, which has been fitted to power series in 
the volume. 

From the calculated zero-temperature equation of state, an approximate high- 
temperature expression can be estimated using the quasiharmonic approximation 

= ~ ( 0 )  + ~ N o ~ B T ~ Y / M  
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where No is Avogadro’s number, Tis the temperature, k, is Boltzman’s constant, p is 
the density, M is the molecular weight and yis Griineisen’sparameter. 

3. Calculation and results 

3.1. Calculation of fhe nearesr neighbours 

The number of the nearest neighbours depends on the spatial distribution of the 
molecules. The space group of the a-phase of N, is Pa3. The unit cell contains four 
molecules, each with its equilibrium axis ordered along one of the four body diagonals 
ofthecube. Thismeans that thecentresof molecules 1,2,3and4are locatedat (O,O, 0), 
(4, &, O), (O,h, I), (1,0,6) as shown in figure 1 [6]. Calculation of the number of nearest . .  

lbl 

Figure 1. Pa3 space group. (0 )  Spatial distribulion of the molecular axes of the four inequiv- 
alent molecules; ( b )  division into sublattices. 

neighbours is obtained for the first shells by using a simple computer program and the 
results are listed in table 1. 

3.2. Calculation of rhe besr orientation of rhe two molecules 

Calculation has been carried out for five orientational geometries which are shown in 

Table 1. Number of nearesl neighbours (in units of the lattice constant) for the first shells. 

Distance Number of Distance Number of 
squared nearest squared nearest 
d2  neighbours d’ neighbours 

0.5 8 5 24 
1 6 5.5 16 
1.5 16 6 24 
2 12 6.5 40 
2.5 16 7 0 
3 8 7.5 16 
3.5 32 8 12 
4 6 
4.5 24 
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Figure 2. Orientational geometries of two molecules (gas phase): (U) H; (b )  L; (c )  X (d) I; 
(4 T. 

figure 2 [SI. Using the Lennard-Jones potential [9]  

with E = 0.31 kcal mol-’ and U = 3.3 8, to find the best orientation which gives the 
minimum potential energy. From figure 3, the best orientations are X and H geometries. 

3.3. Calculation of the bond length r, and corresponding minimum potential U, 
Our crystal potential consists of a f5-12-type potential between atoms of different mol- 
ecules and an intramolecular harmonic potential [lo]. The values of r, and U, are 
obtained and figure 4 shows the relation between the molar volume Vand the minimum 
potential U, in the molar volume range 16-28.4 cm3 mol-’. 

3.4. Equation of state 

At each molar volume V we calculate the corresponding pressurep by two methods. 

(i) Thefirstmethod: lanicesum. Using the definitionp = -aU/aVand representing 
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Figure 3. The intermolecular potential for nitrogen in typical orientations, where r is the 
centre-to-centre distance: +. Lgeometry: X .Tgeametry, 0, Hgeometry;O, Xgeometry; 
A,Igeometry. 

volume tcr+ mol- ' ]  

Figure 4. The calculated minimum potential versus molar volume, 
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U by the Lennard-Jones potential 

U =  E&[(")12 R ij - ("j6] R ij 
'I 

we get 

where p = -&/U. By writing aRij/aV = (aRij/aa)(da/dv) and V = ca3 where C = 
N0/4 then da/dV = (a/3)V which depends on the lattice constants a [ll, 121. Figure 5 
shows the p V  curve. 

Figure 5. The calculated pressure versus 
molar volume (E-phase). 

(ii) The second method: curuefitting. U can be fitted to the series in the volume V 
given by 

and the pressure is determined by the relation 

We find that the best fitting can be obtained from the following: 

U = A/V2 -!- B/V3 -+ C/V4 i D/V5 - 0.26 

p = U / V 3  -!- 3D/V' -!- 4C/Vs f 5D/v6. 
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The values of the constants in these equations are 

A = 1000.56 5 = -52406.21 C = 860 483.76 D = 15 190 694.03. 
We can obtain the value of the volume which gives the minimum potential ( p  = 0) by 
solving the equation 

2AV3 + 3 B V  + 4CV + 50 = 0. 
The results obtained with this method are almost the same as obtained with the first 
method. 

3.5. The v-p relation 

From ther,-VandpVrelationswecanobtainthechangeinr,withp usingtheequation 

I 

(7) 

I 
Pnsrurc lhborl 

Figure6 Frequencychange versuspressure for NI: A ,  calculated points;---. BermVan 
der Avoird [I31 potential; -.-, potentialof Muthy etel [IO]; B, €-12potential[14];0. 
experimentaldata [41. 

Neglecting the second term and forA = 3285.1 cm-’ A-’we obtain the pressure depen- 
dence of frequency as shown in figure 6. Our potential agrees very well with experiment 
[13]. The Berns-Van der Avoird potential [13] and other potentials [lo, 141 asshownin 
figure 6 give very poor results. 
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3.6. Evaluation of bulk modulus 

The bulk modulus is given by 

B ,  = -v(ap/av),. 

This can be obtained from the curve fitting calculated before; the pressure is 

and therefore the bulk modulus B ,  is 

n(n + 1)a. 6A 12B 2OC 30D -_ - +7+7+- 
B m = x  V - t i  v3 v v V 6 '  

From this relation the bulk modulus at any molar volume can be obtained and hence 
the pressure dependence of the zero-absolute-temperature compressibility for Nz can 
be estimated. 

4. Discussion and conclusions 

The quality of the results for Au depends on the quality of intermolecular potential that 
characterize the solid. The intramolecular interaction can be described by the properties 
of an isolated molecule. The crystal field is then assumed to act as a small perturbation 
on internal modes. An atom-atom 6 1 2  potential has been used to investigate the 
pressure dependence of intramolecular mode frequencies in solid nitrogen. Using this 
potential the sublimationenergy iscalculated andisingood agreement with experiment. 
Our results have been calculated at zero temperature using the appropriate T = 0 K 
crystal structures. We see also that different crystal structures do not seriously change 
the pressure dependence of the intramolecular vibrational modes at low pressures. The 
resultsof this work indicate that the low-pressure model of compressed molecular solids, 
discussed earlier, is correct. The good agreement with experiment implies that no 
substantial charge transfer is occurring; this demonstrates that charge transfer is not 
responsible for the fact that du(p)/dp becomes a decreasing positive quantity in solid 
NZ. 
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